Lattice-Ordered Injective Hulls

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injective Hulls of Partially Ordered Monoids

We find the injective hulls of partially ordered monoids in the category whose objects are po-monoids and submultiplicative order-preserving functions. These injective hulls are with respect to a special class of monics called “embeddings”. We show as well that the injective objects with respect to these embeddings are precisely the quantales.

متن کامل

Injective Hulls of C* Algebras. Ii

Proof. The idempotents correspond to the Borel sets modulo sets of first category. Since, in addition, the idempotents generate B(X), B(X) is an AW* and hence an injective algebra. The natural map U of C(X) into B(X) induced by the inclusion map is clearly a homomorphism. It is one-one since continuous functions which are not identically equal must differ on a set of second category. To complet...

متن کامل

Injective positively ordered monoids I

We define in this paper a certain notion of completeness for a wide class of commutative (pre)ordered monoids (from now on P.O.M.’s). This class seems to be the natural context for studying structures like measurable function spaces, equidecomposability types of spaces, partially ordered abelian groups and cardinal algebras. Then, we can prove that roughly speaking, spaces of measures with valu...

متن کامل

Injective positively ordered monoids II

We continue in this paper the study of positively ordered monoids (P.O.M.’s) initiated in [39]. We prove that injective P.O.M.’s are the retracts of the powers of P=[0, ∞]. We also characterize the natural P.O.M.homomorphism from a given refinement P.O.M to its bidual, with e.g. applications to decomposition spaces. As another application, we prove that a refinement P.O.M admits a ‘Banach limit...

متن کامل

Modules which are invariant under monomorphisms of their injective hulls

In this paper certain injectivity conditions in terms of extensions of monomorphisms are considered. In particular, it is proved that a ring R is a quasi-Frobenius ring if and only if every monomorphism from any essential right ideal of RR into R (N) R can be extended to RR. Also, known results on pseudo-injective modules are extended. Dinh raised the question if a pseudo-injective CS module is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1972

ISSN: 0002-9947

DOI: 10.2307/1996249